
The University of Texas at Arlington

Lecture 8
Addressing, Tables, Banks, Memory

CSE 3442/5442
Embedded Systems 1

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

How Can the CPU Access Data?

2

How Can the CPU Access Data?

3

4

5

Accessing Data

• CPU can grab data…
– from a register
– from a memory location
– provided as an immediate value

• Known as different Addressing Modes
• Determined by µC designers

– Cannot be altered by the programmer

6

7

Addressing Modes

1. Immediate
– Operand part of the instruction (constant K)

2. Direct
– Instruction has the operand of a RAM address and

thus can be directly addressed
3. Register Indirect

– Kind of like using pointers to address registers. There
are specific SFRs set aside for this.

4. Indexed-ROM
– Constant fixed data stored alongside the program

code
7

8

Immediate Addressing

• Operand (data) is part of the instruction, thus
‘immediately’ available when instruction is fetched
– Immediate Data == “Literal” Data

• Literal Operations
MOVLW 0x7F ; 7FH WREG

ANDLW B’01000000’ ;AND WREG with 40H
SUBLW D’62’ ;subtract WREG from 62

8

Immediate Addressing

9

Immediate Addressing

MOVLW 0X7f
ANDLW B’01000000’
SUBLW D’62’

0E 7F
0B 40
08 3E

10

11

Immediate Addressing

• Operand (data) is part of the instruction, thus
‘immediately’ available when instruction is fetched
– Immediate Data == “Literal” Data

• Using EQU
COUNT EQU 0x30
MOVLW COUNT ; 30H WREG
;Assembler insures 30H placed in the second byte of the instruction

• RAM cannot be immediately addressed (i.e., there is no MOVKF). 11

Direct Addressing

12

13

Direct Addressing

• Operand (data) is obtained from or to file register
– Data is in a RAM location whose address is known and

included as part of the instruction

– Instead of “literal” data being put in ROM next to Opcode
the address of the File Register location is put there

• Note the MOVWF can only access the current bank while the MOVFF
instruction can access all of the 4K RAM address space (recall, that File
register (RAM) arranged into 16 Banks of 256 bytes).

13

14

Bank Switching

• Max 4K of RAM (in PIC18 but not all have max)
• Only 256 bytes are addressable
• RAM is divided into a max of 16 banks
• Default bank’s lower 128 bytes are general

purpose, while upper 128 are the SFR
• MOVWF fileReg , A

– Until now we have ignored A
– If A=0 then default bank is used
– If A=1 then bank selector register is used to

determine bank
14

15

Bank Addressing

15

16

Bank Addressing

• Direct Addressing Instructions take two bytes,
one for the operation code and the other for
an 8 bit 256 byte Access Bank address.

• Thus will need way to access the other banks
16

Direct Addressing

17

18

Absolute AddressRelative Address

0xFFF = 4KB

Relative Address

19

SFRs
Special Function Registers

20

21

Bank Selector Register

• Bank Selector Register (BSR) is an 8 bit register
in the SFR
• Only the 4 LSBs are used

• If using the BSR, then bank 0 is a continuous 00F-
FFH and bank FH’s upper 128 bytes are the SFR
(as in the RAM map)

• Default value for BSR is 0
• Thus if need to use other banks:

• Load BSR with the desired banks number MOVLB instruction
can be helpful

• Use A=1 in the instructions

• INCF MYREG, F, 0 vs. INCF MYREG, F, 1
21

22

MOVLB
Bank Selector Register

22

23

Bank Selector Register Example
MYREG EQU 0x40

MOVLB 0x2 ; 0010  BSR (use bank 2)
MOVLW 0
MOVWF MYREG, 1 ; loc 0x240=0
INCF MYREG, F, 1 ; loc 0x240=1
INCF MYREG, F, 1 ; loc 0x240=2

MOVLB 0x2 ; 0010  BSR (use bank 2)
MOVLW 0
MOVWF 0x40, 1 ; loc 0x240=0
INCF 0x40, F, 1 ; loc 0x240=1
INCF 0x40, F, 1 ; loc 0x240=2

23

24

25

Moving Data Between RAM Registers

• MOVFF can move data between any RAM
registers without the need for BSR

• This is possible because MOVFF is 4 byte
instruction (8 bits of opcode, 2*12 bits for
address = 32 bits total)

• But no arithmetic can take place without
the use of the WREG

25

MOVFF

26

27

SFRs

28

SFRs

29

30

Register Indirect Addressing

• A special register (NOT SFR) is used as a pointer (actually 3)
• FSRs (File Select Register) are 12-bit registers:

– FSR0, FSR1, FSR2
– Each is represented by two SFRs, e.g., FSR0 has FSR0L and FSR0H

LFSR 1, 0x030 ; load 0x30 into FSR 1
LFSR 0, 0x130 ; load 0x130 into FSR 0

• The file register that the FSR is pointing to can be than
reached in INDF0, INDF1, and INDF2, respectively

LFSR 0, 0x130
MOVWF INDF0 ; contents of W moved to fileReg 0x130

30

MOVLW 28 ;28 WREG
LFSR 1 , 0x52F ;load 0x52F into FSR 1
MOVWF INDF1 ;Copy contents of WREG into

;RAM location held in FSR1

31

32

FSR0-2 Registers Used for
Register Indirect

• Each FSR0-2 register is 12 bits thus consisting of two one
byte file registers.

• The low order 8 bits are in one byte (FSRxL) and the upper
4 bits in the low order bits (or nibble) of the second byte
(FSRxH).

32

Register Indirect Addressing
Advantages

• Can now access data dynamically instead
of just statically (Direct Add. Mode)

• We can simply increment the pointer
== incrementing a file register (INCF f, 1)

• Effective for sequential data (array/string)
operations

• There are instructions for incrementing
FSRs and clearing memory locations to
which FSR points.

33

34

35

36

37

Useful Instruction for Work with
the FSR Registers

• INDFn after operation, the FSRn stays the same
– CLRF INDF1 ;clears fileReg pointed to by FSR1, FSR1 unchanged

• POSTINCn after operation, the FSRn is incremented
– MOVWF POSTINC2 ;copy WREG to fileReg pointed…, FSR2++

• PREINCn FSRn is incremented, then operation is performed
– ADDWF PREINC0 ;FSR0++, new pointer address added to WREG

• POSTDECn after operation, the FSRn is decremented
– MOVWF POSTDEC1 ;copy WREG to fileReg pointed…, FSR1--

• PLUSWn after operation on address of (FSRn + WREG),
FSRn & W unchanged
– CLRF PLUSW1 ;clears fileReg pointed to by FSR1+WREG, FSR1

and WREG remain unchanged

– Note: The auto-increment/decrement affects the entire 12 bits of FSRn
and has no effect on Status register. Thus FSRn going from FFF to 000
will not be detected by the flags. 37

38

FSR Auto-increment

38

39

FSR Auto-increment

39

How Can the CPU Access Data?

40

Storing Data in
Program Memory (ROM)

• The ROM (program memory) can be used to store
constants (e.g., strings) to save available RAM space

41

Memory Sizes on the 452

42

43

44

DB – Define Byte or
“Declare Data of One Byte”

• Assembler directive DB can be used to
store/write bytes in ROM (program mem)
– 8-bit chunks
– Fixed data

ORG 500H ;must be even address
DATA1 DB D’28’
DATA2 DB 0x39

ORG 510H ;must be even address
DATA3 DB ‘H’,’E’,’L’,’L’,’O’,’1’

ORG 520H ;must be even address
DATA4 DB “Hello World”

44

45

DB – Define Byte or
“Declare Data of One Byte”

45

DATA vs. DB

• Can use DATA directive for larger values

• DB: 0 – 255 (0x00 – 0xFF)

• DATA: 0 – 65,535 (0x00 – 0xFFFF)

MPLAB Ex.

46

47

Lookup Tables

• Instead of calculating, sometimes storing
lookup tables is more efficient
– (cosine/sine tables, square tables, etc.)

• Lookup tables can be stored as
instructions in the ROM

• RETLW K is a return from subroutine
command that copies K into WREG as
well. This can be used easily for lookup
tables.

47

48

Reading Data from ROM

• Register indirect ROM addressing, i.e.,
accessing ROM is done through SFR registers
– Known as table processing

• TBLPTR is a 21 bit register pointing to the data
accessed in ROM
– (TBLPTRU, TBLPTRH, TBLPTRL)

• TBLAT (table latch) is used to copy/hold the
data pointed by TBLPTR, once instructed

48

49

50

Reading Data from ROM (cont’d)

50

51

52

Lookup Table Example
x2 + 2x + 3

MPLAB Ex.
52

53

Macros

• Macro is used for referencing the same group of
instructions repeatedly
– Macro == sequence of instructions

• Thus do not have to repeat/write the instructions
each time instruction group are used
– For useful non-standard operations

• Place/define “above” your main code (ORG 0)

• Macros can call other macros or itself recursively
– Max 16 nested macro calls

53

54

Macros

name MACRO arg1, … , argN ;200 character limit
… ;macro body
… ;macro body
ENDM

E.g.: create a copy literal to file register operation

MOVLF MACRO k, myReg
MOVLW k
MOVWF myReg
ENDM

ORG 0
…

MOVLF 0x55, 0x20
MOVLF 0xFF, PORTB 54

Macros – LOCAL Directive

• Must declare labels in the macro’s body as
LOCAL to prevent conflictions

• LOCAL must be used right after macro dir.

55

Macros – LOCAL Directive

56

MPLAB Ex.
57

Macro vs. Subroutine

• Macros
– Increase overall code size

• 10-instruction macro called 10 times = 100 total instructions
– Allows in-line arguments in macro call
– No return values

• Subroutines
– Fixed code size
– No in-line arguments when calling a subroutine
– Return value is “possible”

• retlw (return with literal in WREG)

– Uses stack space
• Too many nested calls can cause stack issues

58

59

#INCLUDE Directives

• Use INCLUDE directive to reference
macros/code defined in other files

• The specified file is read in a source code
#include P18F452.inc
#include <MyMacros.mac>
#include “C:\Program Files… .h”

Assembler will look for file in…
1. current working directory
2. source file directory
3. MPASM assembler executable directory

MPLAB Ex. 59

Modules

• With having the main procedure and
subroutines in the same file…
– If one subroutine fails, all must be rewritten

• Treat each subroutine as its own program
– Known as “modules”
– Each a separate file (.o or .asm file)

• Assembled and tested independently
– All brought together (linked) to form a single

program
60

Modules Directives

• EXTERN
– Notifies assembler/linker that certain names and

variables are not defined in the present module but in
another (externally)

• GLOBAL
– Notifies assembler/linker that certain names and

variables may be used by other outside (external)
modules

• GLOBAL (public) allows the assembler and
linker to match it with its EXTERN counterpart(s)

61

Module Example

62

Module Example

63

Data RAM in C

• PIC18 has 4K of RAM (file registers)
• Compiler has chosen variable (data)

locations automatically so far
• NEAR and FAR storage qualifiers

near unsigned char myArray[100];
…
far unsigned char myArray[100]; 64

65

Working With Data in ROM Using C

Use the keyword rom

65

66

Using Near

• near and far
can be used to
control where
the data in the
ROM should be
(in low 64K or
anywhere)

• More efficient
use of code
space

66

67

Placing ASM Code/Data in C

• Assembly can be directly embedded in C code
– #asm and #endasm
– or asm();

67

#pragma

• In C, can put code or data at exact ROM or
RAM address

68

69

Placing ASM Code in C
at Specific Addresses

• To place code at specific ROM address
– ORG (for ASM) #pragma (for C compiler)

69

70

Placing ASM ROM Data in C
at Specific Addresses

• To place data at specific ROM address
– ORG (for ASM) #pragma (for C compiler)

70

71

Idata Example

71

72

Overlay Variables
• Two variables can use the same space if they are not used at the

same time
• The compiler may decide to use the same physical location for

variables x and y in the following two functions:

unsigned char functionA(void)
{

overlay unsigned int x=0;
x++;
return x;

}

unsigned char functionB(void)
{

overlay unsigned int y=5;
y--;
return y;

}

• What would happen if functionA called functionB?
72

Non-Volatile Memory in PICs

73

Non-Volatile Memory in PICs

74

Non-Volatile Memory in PICs

• In addition to the volatile (but flip-flop based and thus
stabile) SRAM, there are two kinds of non-volatile memory
integrated into PIC18Fs:
– Flash EPROM, this is the memory in which firmware is uploaded
– EEPROM memory, for storing variables that should not be reset

• Why not only use one kind?
– EEPROM is more expensive, but it can be rewritten byte-by-byte.
– Flash EPROM, before rewriting, requires a block erase (flashing it)

and can only be written one block at a time.
• In general, electrically erasable programmable ROM can

only be rewritten a limited amount of times before being
damaged (~100k times).

75

EEPROM

• Four SFRs used for EEPROM read/write
– EECON1

• Control register for EEPROM access
– EECON2

• “Dummy” register used for writing sequence
– EEDATA

• Holds the 8-bit data for writing to or reading from
– EEADR

• Holds the EEPROM location (address of data)

76

77

SFRs for EEPROM

78

79

Writing to EEPROM

1. Load EEADR with EEPROM location destination
2. Load EEDATA with data we want to write
3. Set EECON1 configurations for writing

EEPGD = 0, CFGS = 0, WREN = 1

4. Write 0x55 to EECON2
5. Write 0xAA to EECON2
6. Set EECON1bits.WR = 1
7. Wait until WR bit clears to 0

80

Reading From EEPROM

1. Load EEADR with EEPROM location source
2. Set EECON1 configurations for reading

EEPGD = 0, CFGS = 0, RD = 1

3. Data is fetched and put into EEDATA
4. Copy EEDATA to variable/RAM location to

use as a normal value

81

EEPROM Header File

• Can use EEP.h for simpler functions calls
for EEPROM writing and reading

82

	Lecture 8�Addressing, Tables, Banks, Memory
	How Can the CPU Access Data?
	How Can the CPU Access Data?
	Slide Number 4
	Slide Number 5
	Accessing Data
	Addressing Modes
	Immediate Addressing
	Immediate Addressing
	Immediate Addressing
	Immediate Addressing
	Direct Addressing
	Direct Addressing
	Bank Switching
	Bank Addressing
	Bank Addressing
	Direct Addressing
	Slide Number 18
	Slide Number 19
	SFRs�Special Function Registers
	Bank Selector Register
	MOVLB�Bank Selector Register
	Bank Selector Register Example
	Slide Number 24
	Moving Data Between RAM Registers
	MOVFF
	Slide Number 27
	SFRs
	SFRs
	Register Indirect Addressing
	Slide Number 31
	FSR0-2 Registers Used for Register Indirect
	Register Indirect Addressing Advantages
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Useful Instruction for Work with the FSR Registers
	FSR Auto-increment
	FSR Auto-increment
	How Can the CPU Access Data?
	Storing Data in �Program Memory (ROM)
	Memory Sizes on the 452
	Slide Number 43
	DB – Define Byte or�“Declare Data of One Byte”
	DB – Define Byte or�“Declare Data of One Byte”
	DATA vs. DB
	Lookup Tables
	Reading Data from ROM
	Slide Number 49
	Reading Data from ROM (cont’d)
	Slide Number 51
	Lookup Table Example�x2 + 2x + 3
	Macros
	Macros
	Macros – LOCAL Directive
	Macros – LOCAL Directive
	Slide Number 57
	Macro vs. Subroutine
	#INCLUDE Directives
	Modules
	Modules Directives
	Module Example
	Module Example
	Data RAM in C
	Working With Data in ROM Using C
	Using Near
	Placing ASM Code/Data in C
	#pragma
	Placing ASM Code in C �at Specific Addresses
	Placing ASM ROM Data in C �at Specific Addresses
	Idata Example
	Overlay Variables
	Non-Volatile Memory in PICs
	Non-Volatile Memory in PICs
	Non-Volatile Memory in PICs
	EEPROM
	Slide Number 77
	SFRs for EEPROM
	Slide Number 79
	Writing to EEPROM
	Reading From EEPROM
	EEPROM Header File

